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ABSTRACT

The instantanecous frequency of WWV, 20 Mc (Washington, . C.), and
that of a highly stable signal at 17.8 Mc radiated from Mayaguez, Puerto
Rico, were simultancously and continuously recorded hetween October 1960
and September 1961 at Palo Alto, California, and at Seattle, Washington.
Traveling ionospheric disturbances (TIN’s) have been identified on these
recordings by noting the occurrence of similar frequency fluctuations
appearing with appropriate time delays, and in the appropriate order, on
cach of the four available paths. The geometry of these paths is such
that disturbances traveling from north to south, or vice-versa, are most

easily detected.

It is found that the disturbances give rise to either quasi-sinusoidal,
or V-shaped fluctuations in the recordings of frequency vs. time. If a
given disturbance is assumed to travel along a great circle at a constant
speed, this speed can be estimated from the time interval between inter-
ception of the northernmost transmission path and the southernmost one
(a minimum distance of about 1200 k). From the duration of the resulting
fluctuation on a given path and the estimated speed of the disturbance,

its effective spatial length can be inferred.

Because of the wide separation of the long-distance transmission paths,
the experimental setup is sensitive only to large-scale TID's moving at
high speed. Such disturbances would probably not be detectable on re-
cordings made with the comparatively close receiver spacing used by many
researchers in the past. From 1600 hours of data (usualiy from 1600 UT
to 0200 UT) between October 1960 and Apral 1961, nine TIL's have been
positively recognized on the frequency recordings It was possible to
deduce speeds and lengths (on the above assumptions) in six instances.
Velocities range from 1450 km/hr, and spatial lengths from 1300 km to
greater than 2000 km. The direction of travel cannot be determined ac-
curately, but, in each case, the general direction is from north to south.
The results suggest that certain of the TIL’s change their velocity and/or
direction of travel during the passage through the four transmission paths.
In four cases, sudden frequency changes, correlated with sudden changes
in the earth’s magnetic field recorded at Stanford University, preceded
the occurrence of large-scale TID’s. It is suggested that these traveling
disturbances may have been launched by the same event giving rise to the

sudden change in the earth’s magnetic field.

- 111 -
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1. INTBOLUCTION

llorizontal traveling disturbances in the ionosphere have been studied
extensively by Munro [Refs. 1-4) and many other workers [Refs. 5-13),
employing closely spaced networks. Traveling ionospheric disturbances
(TIL' s) were observed by a variety of techniques, including group-path-
vs.-time records [lefs. 1-9), and signai-intensity- vs.-time records
(Refs. 10-13]) of received signals transmitted at fixed frequencies from
Lwo or more stations, separated by a few tens of kilometers to not more
than 500 k. Traveling ionospheric disturbances at heights above the Fo
saxioun (400 km) have heen studied by the radio-star-scintillation tech-
nique [Refs 14-16)

Traveling ionospheric disturbances can also be detected by studying
the variation with azimuth of the minimum range of ground hackscatter
scen on a rotating-antenna fixed-frequency hackscatter sounder. [Refs.
17,18). This technique, developed by Vulverde [Ref. 17), at Stanford
University, has the advantage that the directions and the velocities of
disturbances can be determined at one station. This technique is partic-
ularly useful for detecting large, wide-spread disturbances. But it re-

quires continuous, pulsed, sounding transmissions.

In this report, TID's in the Fy layer in a non-auroral region are
investigated by observing their effect on the 1nstantancous received fre-
quency of four stable h-f transmissions. The four transmissions are con-
sidered to be stable since the frequency fluctuations imposed by the
ionosphere are much larger than the inherent frequency fluctuations of the

transmitting and receiving systems.

The four geographically separated transmission paths extend over dis-
tances from 3750 to 6000 km in the cast-to-west direction. The norther-
most and the southermost paths are separated by more than 1200 km. DBecause
of the comparatively wide spacing of this network, only large-scale and
high-speed TID's, whose morphology does not change appreciably in the
time interval between path crossings, are detected. Traveling ionospheric
disturbances distinguishable by this technique prove to be very rare, and
their indicated velocities have been very high. Observed velocities
ranged from 1450 to 2700 km/hr as compared with the velocities observed

by other researchers, as listed below.

-1 -



Velocity

Range
Researcher (ke/hr) Remarks
Ynnro [Mef. 4) 420 - 500 nmonthly average
Price (Ref. 5) 120 - 1200  waximum wo. av 600 km/hr
Toman (Ref. 6) 250 - 600 maximum no  at 350 ke br
Beynon [Ref. 7) 420
Ramachandra Rae (Ref. }2) 540 1200
Vaxwell and Livele (Ref. 14) 430 average
Newish [Ref. 15) 360 - 1100  at about 400-km height
Yaxsell and 180 - 1100 in non-auroral regions
Dagg (Ref. 16) 720 - 1800 in auroral region abont 400 ke
Valverde (Ref 7] 700 - 2000
Tveten [Ref. 18] 200 - 1100 for swall-scale disturbances

up to 4500 for large-scale distnrbances

With stable transmissions already available from standard - frequency
broadcasting stations in the U. S. A., Canada, and other parts of the
world, a newwork covering a large portion of the world conld be established
comparatively cconomically hy establishing suitable receivers at the ap-
propriate locations

The equmipments of this experiment are briefly descrided in Section I,

and the resnles are presented in Section 111, followed by discussion and
conclnsions in Sections IV and V. A possible association between the
occurrence of the large-scale traveling distnrbances and the saudden com-
mencements of geomugnetic storms is discussed in Section IV but, m-
fortunately, the limited information obtained in this experiment al lows

only a prehiminary conclusion to he made.



11. EXPERIMENTAL ARRANGEMENTS

From Octoher 1960 to September 196], stable-frequency Lransmissions
of 17.8825 Mc from Puerto Rico (referred to as PH-17) and 20 Mc from vy,
Washington, . C. (referred to as WAV-20) have been simul tancously and
continuously recorded at Stanford University (referred to as SU), near
Palo Alto, California, and at the University of Bashington (referred to
as UW), Seattle, Washington. The four transmission paths are shewn in
Fig 1. The numbers 1, 2 and 3 are points of reflection in the 1onosphere
for the l-hop, 2-hop, and 3-hop modes of propagation The WAV-20.to-UN
and WWV-20-t0-SU paths, approximately 3750 km and 3950 km in ground dis-
tance, respectively, will support !-hop, 2-hop, and 3-hep modes of propa-
gation, whereas PR-17-to-UN and PR-17-t0-SU paths, approximately 6000 ke
and 5750 km in ground distance, will support primarily 2-bop and 3-hop

modes of propagation.

The PR-17 signal is transmitved on a threc-clesent beam Yag:r antenna
with about 600-w average power. A Rhode and Schwarz XUD frequency synthe-
sizer is used to generate the frequency at 17.8825 Mc with stabilivy better
than a few parts in 109 per day  The WAV-20 signal is transmitted on a
nondi rectional antenna with ahont 10-kw average power. Its stability is
better than one part in 1010 per day. At the radie frequencies used,
frequency fluctuations cased by the ionosphere are large compared with the

inherent frequency fluctuations of the sources

Parts of the receiving system have been previously reported by Fenwick
and Villard (Ref. 15). llowever, in the present sctup, a Rhode and Schwarz
XUD frequency synthesizer is used, along with the Bhode and Schwarz XSA
frequency standard to heat with the incoming signals.  The frequency beat
note (usnally in the 0- to 10-cps range), is fed into a frequency meter
that produces a rectangular pulse at each input-signal zero-crossing. The
frequency meter output is then recorded on a Sanborn paper-tape recorder.
A coded time-marking signal is introduced into the system at the beginning
of each hour to facilitate the identification of the time. This counter-
type system responds to the instantancous frequency of that mode of propa-
gation which is strongest at any given instant. The over-all accuracy of
the system is about 0.2 cps.

In addition to the counter-type recordings described above, the
0 - 10-cps signal itself is also direct-recorded on a modified Webcor
magnetic-tape recorder whose speed is approximately 1/50 in./sec [Ref. 20].

The magnetic tape is played back at a much higher speed, usually at

. 3 =
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15 1n./sec, into a Kay Electric Company Sonalyzer to obtain a frequency
amplitude-time record, which is known as a "Sonagram®, with frequency
along the vertical axis, time along the horizontal axis, and anplitude
shown by the darkness of the pattern. The Sonalyzer accepts a frequency
band extending from 85 to 8000 cps In this instrument, the bandwidth of
the tuned circuit, which scans through the frequency range, is 45 cps, and
an individual Sonagram represents an input time interval of 2.4 sec. As

a conscquence of speeding up the magnetic tape approximately 800 times,
the effective bandwidth of the selective circuit is about 1/16 cps, and
the time is also effectively compressed by a similar amount. As a resule,
a single-frequency signal component must last for at least 15 to 20 sec

in real time to register a readable pattern on the final record. The
"Sonagram", in contrast with the counter-type record, permits study of the
behavior of different propagating modes with different frequencies 1 f
more than one such mode is present at a given time The accuracy of this

system is also about 0,2 cps.

Any frequency fluctuation greater than 0. 2 cps can he regarded as due
Lo variations of or disturbances in the ionosphere The simultaneous re-
cordings of signals transmitted along four separate paths make it pos -
sible to distinguish widespread ionospheric disturbances, such as those
due to solar flares, world-wide magnetic storms [Ref. 21), etc , from
TIE's.  The following sections report the rarcly observed evidences of

large-scale TID's studied by means of this technique.



111, RESULTS

The four transmission paths shosn in Fig. | have been in use between
October 1960 and September 1961 except for periods of equipment failure
or poor propagating conditions in the ionosphere. Under normal conditions
tn winter, WY-20 and PR-17 usually come in in the morning around 1400 UT,
and fade out in the evening around 0200 UT, with slight time variations
for different paths. A study has been made of about 1600 hours of re-
cordings obtained between October 1960 and April 1961 during which vime
at least three of the four paths were usable. Traveling ionespheric dis-
turbances (TID*s) have been identified on these recordings by noting the
occurrence of similar frequency fluctuations appearing with appropriate
time delays, and 1n the appropriate order, on each of the four available
paths  Only nine TID's have been positively recognized by means of these
particular multi-station, stable frequency transmissions Juring this
peried.  These nine are Jescriled 1n chronological order and are numbered
accordingly 1n Table |, and two (Nos | and 3) are drscussed in more

detarl 1n Sectrions 1E1 A and B respectively.

A TRAVELING TONOSPHERIC EISTUBBANCE OF 12 AND 13 LECEMBER 1960

Figure 2 presents counter-type records of the instantanecous frequency
variation of signals propagated along 1he four transmission paths on 12
and 13 Deceaber 1960. These signals are WAWV-20 received at UX, PR-IT also
received at UW, WWV.20 received at SU, and PR-17 received at SU, all dis-
played on the same time scale. The WAY-20 signals have a cut-off period
from approximately 45 to 49 min after each hour. Calibration warks intro-
duced at the receiving stations at [5-min intervals appear on three of the
fonr recordings, and hourly time marks are also placed on the recording
of the PR-17-t0-SU signal.

An 1onospheric distnrbance can he recognized on the WAV 20- to-UW
signal by the V-shaped inflection in the frequency recordings from 2330
to 0015 UT. The relative frequency of WWV-20 at UW decresses at the rate
of about 3-1/2 cps in a half hour to a minimuwm near 2354 UT. It then
increases back to the normal propagating frequency at a higher rate. A
similar V-shaped inflection can be recognized on the records of the other
three signals except that the fluctuations occur at different times on
each path. On the PR-17-to-UW signal the frequency minimnm occurs near
0000 UT; on the WWV-20-to-SU signal this minimum occurs near 0004 UT; and
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on the M-17-to-SU signal the minimum occurs still laver, av 0040 UT
This series suggests a TID moving approximately from north te south and
intercepting the four paths successively.

Figure 3 shows frequency amplitude-time displays of the same vraveling
disturbance for tve of the four paths, i.e., Mi-17 to both the UN and SU
There are ne magnetie-tape recordings for Lhe other two paths during this
period  The time scale of the two [requency-spectra in Fig. 3 is dis-
placed by about 37 min to exhilit the similarities of the V-shaped inflec-
tion caused by the TII). The details of the frequency fluctuation are not
tdentrcal, because 1n 37 min the disturbance has traveled several hundred
kilometers over which distance 1ts shape may have changed llowever, the
general characteristics of this vraveling disturbance can still be iden-
tilied by the eharacteristic drop i1n frequency followed by a rise at a

faster race

The vime 1nterval between the passage of the TID through the nothern-
most path (WAV-20-to-UN) and through the southernmost path (PR-17-to0-SU)
18 about 45 min. The vinieum distance between these two paths is about
1200 km. Therefore. the velocity of the traveling disturbance, assuming

that the velocity 15 constant, 1s equal to or greater than 1600 ka/hr

Virtnal-height variations measured at Boulder, Colorado. White Sands,
New Mexico: Washington, 1. C.; and Puerto Rico during the period shen the
TID occurred are plotted in Fig. 4 The curves are obtained from the
ordhinary ravs of the 10nograms recorded at the respective stations once
every 15 min The virtnal-height variations at Bonlder show a distinctive
ripple near 0015 UT and those at White Sands a ripple near 0045 UT.  The
movimna positive slope of the ripple near 0000 UT measured at Bonlder
(Fig. 4) correlates with the freqnency minimum at 0004 UT on the WAV-20-
to-SU path (Fig. 2), and the maximum positive slope of the ripple near
0040 UT at White Sands (Fig 4) correlates with the frequency mimimum at
0040 UT of PR-17-t0-SU  Although the virtnal-height variations are ob-
tained from ionograms taken at 15-mir intervals, and ecven though Bomlder
and White Sands are not located exactly on the transmission paths (refer
to Fig. 1), time correlation between the maximmm positive slopes of rip-
ples and frequency minime is very good.

It is also noticed, in Fig. 4, that no clearly similar “ripples’ are
seen during the period on virtual-height-variation plots at Washington,
D. C., or at Puerto Rico, suggesting that this particalar TID did not
affect the east coast of the United States.

- 10 -
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Three-frequency h- backscatter soundings at Stanford University,
similar to those used by Valverde (Ref. 17). have been examined for TID's
during the period from 2300 UT, 12 December, to 0100 UT, 13 December 1960.
None could be discerned. llowever, the maximun range at shich disturbances
can be seen by these sounders is about 1500 km. The evidence suggests
that the wavefront of this disturbance was not large enough Lo cover the
cast and west coasts of the United States. Thus, this particular dis-
turbance must have traveled through the central part of the United States
from north to south. From the Boulder and Bhite Sands data in Fig. 4 and
the frequency recording in Fig. 2, the TID appears to be a disturbance of
electron density in the F-region of the ionosntere with a period of about
50 min.  With its velocity determined to he greater than 1600 ka/hr. the
disturbance must have had a spatial length greater than 1300 ke.

B. TRAVELING 1ONOSPHERIC BISTURBANCE OF 17 FEBRUARY 1961

Two TII’s were detected on 17 February 1961. One is shown in Fig. §.
Frequency fluctuations on the four paths are displayed in the same order

as those in Fig. 2.

The received frequencies increase suddenly and simultancously on all
four paths at 2028 UT. This increase is not caused by a TID, since the
paths are scparated hy several hundred kilometers. Sudden frequency
changes of this sort have been correlated with the occurrence of solar
flares or sudden changes of the ecarth’s magnetic field [Ref. 21). This
frequency increast at 2028 UT correlates with the sudden commencement of
a magnetic storm. A small (17-gamma) but sudden decrease of the carth's

magnetic field was recorded at that time at Stanford University.

Since the counter-type recording system responds only to the strongest
mode of propagation at any given time, when several modes of approximately
equal strength are propagating at the same time, the recorded frequency
will be that of whichever mode happens to be strongest. Thus, the fre-
quency may jump at random from one value to another, depending on the
relative strengths of the modes. On the WWV-20-to-SU path in Fig. §, two
modes of approximately equal strength, and with frequencies differing by
about 1/2 cps, have been propagating prior to 2045 UT. However, after
2049 UT, an ionospheric disturbance caused the frequency of one mode to
vary quasi-sinusoidally with a minimum near 2100 UT and a maximum near
2110 UT, while the frequency of the other mode remained almost unaffected

throughout the period. The frequencies of the two modes coincided at

2105 UT.
- 13 -
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Similar, though less distinctive, features are also noticed on the
frequency recardings of the other three paths. On the frequency re-
cordings of PR-17 at UN, the frequency of ane mode is almost constant,
while the frequency of the disturbed mode is lower than that of the un-
disturbed mode before 2115 UT and higher aftersard. The frequencies of
the two modes coincide at 2115 UTl. On the WAV-20-to-SU path, the sinu-
soidal frequency variation from 2100 to 2145 UT indicates the preseace of
the disturbed mode As contrasted to the other three paths, the frequency
recordings of WAV-20 at SU appear to lack a mode of propagation whose
frequency is constant throughout that period. This absence of muluiple
nodes can be interpreted as meaning that only one mode, the undisturbed
one, is propagating during that period, or, il more than one mode is
propagating, that the disturbed mode is much stron,.» than any undisturbed
component. On the PR-17-10-SU path, the frequency of the disturbed mode
is lower than that of the undisturbed mode before 2135 UT and higher
aftervards. The frequencies of the two modes coincide at 2135 UT.

Using the time when the frequencies of the dilferent modes coincide
as a reflerence, the ionospheric disturbance interceptsthe WV-20-vo0-SU
path at 2105 UT, the PR-17-to-UW path at 2115 UT, the WYV-20-t0-SU path
around 2119 UT, and the PR-17-t0-SU path at 2135 UT. 1This sequence shows
that an ionospheric disturbance is traveling in the central part of the
United States generally from north o south. It covers in 30 min a dis-
tance greater than 1200 km, and its period of disturbance is about 45 =in
on any path. Therefore, the TID has a speed greater than 2400 km/hr and
o spatial length over 1800 km.

C. DISCUSSION OF TRAVELING IONOSPIERIC DISTURBANCES

Traveling ionospheric disturbance No. | (Figs. 2 and 3), described
previously, caused a V-shaped inflection to appear on frequency record-
ings. Disturbance No 7, which was detected by the sudden frequency de-
crease followed by a slow frequency increase, also appears to have caused
o V-shaped fluctuation or unequal slopes on the frequency recordings.

The time when the frequency is minimum is used as the reference time for
the TID to cross a stable-frequency transmssion path. All other TID's--
1.e., Nos. 2, 3, 4, 5, 6, 8, and 9--produced quasi-sinusoidal frequency
variations. Multiple modes appear in Nos. 2, 4, 5, 6, 8, and 9, with

the frequency of one mode remaining almost constant throughout the period
under study, while the frequency of the disturbed mode varies quasi -

sinusoidally. The time when the frequencies of the disturbed and the

- 15 -



undisturbed modes coincide is used as the relerence time for the TID vo

cross a transmission path,

Sudden frequency changes that occurred simul taneously on all four
paths preceding  traveling 1onospheric disturbances are found in four
cases, (Nos 2 4. 5, and 8). In three cases, (Nos 2, 5. and 8), the
sudden [requency changes corresponded to sudden commencements of geomag-
netic storms, and in the other case (No. 4) the (requency change corres-
pended to sudden impulses found in Stanflord rmagnetograms. I sturbance
No. § 18 1llustrated in Fig. 5 and has been described in Section 111 8.
The (requency recording of TID's Nos. 4 and 8 are shown in Figs. 6 and 7
respectively. Note the simultancous frequency fluctuations at 1733 UT
IT February (Fig. 4) and at 1452 UT 13 April (Fig. 8). »hich preceded the
TID's  The TID's have the usual characteristie that the frequency of the
disturbed mode varies quasi-sinusoidallv. The reference Lime and other
details of the disturbances are described in Table 1.

The spced at which a disturbance travels 1s caleulated from the time
lapse between the crossing of the northernmost path (i.e., WV-20-to-UN)
and that of the southernsost path (i.e., PR-17-t0-SU). From this it can
be assumed that the disturbance must travel a minimum distance of about
1200 k= hetween these two paths. The period of a disturbance is taken to
be an average of the duration of the Jisturbances observed on the fre-
quency recordings corresponding to the di fferent transsission paths. The
spatinl length of the disturbance is then taken to be the product of the
estimated speed and average period of the TID.

The layout of the four transmission paths is such that 1onospheric
disturbances traveling in the central part of the United States are most
easily detected, as substantiated by the experimental results. Six TID's
(Nos. 1, 2, 4, 5, 8, and 9) affect the four paths successively and two
(Nos. 6 and 7) cause listurbances on only three paths. During TID No. 2,
only two paths (WWV-20-to-SUand WWV-20-to-UW) are disturbed, suggesting
that No. 2 might have traveled from north to south along the east coast
of the United States, and that the disturbance was damped before it

reached the two transmission paths from Puerto Rico.

Figure 8 is a gnomonic projection of the United States on which the
great-circle path between any two points is represented by a straight
line joining the two points. If the ionospheric distance 1s assumed
to travel with constant speed along a great-circle path, then the path

of the disturbance can be determined uniquely by knowing the exact time

- 16 -
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that the TID intercepts each of the four different paths. By employing a
map such as shown in Fig. 8, the problem of spberical geometry is sim-
plified into a problem of piane geomerry. Of the nine detectable travel-
ing ionospheric disturbances, five (Nos [, 4, 5. 8. and 9) are observed
to intercept all four paths. The refe: ..c time on each path is measured
to the nearest minute, and the respective paths of travel can be inves-
Ligated. llowever, only one (No. 4) of the five disturbances produced a
consistent result. Other disturbances either described a path of vravel
not intercepting all the transmission paths or required aspeed much great-
er than the speed of sound in the Fo layer. The path for TID No. 5 is
shown in Fig. 8. and the direction is 208 K of N. According to this
path, the speed of the ionospheric disturbance, covering 1373 km is about
30 min, 1s approximately 2750 km/hr (compared with the speed of 2400 km/hr
previously estimated in Section 111 B)

D. COMMENTS ON THE DIRECTION OF TRAVEL AND CONSTANCY OF SPEED

Valverde (Ref. 17) observed that the speed of large-scale TIN's was
constant, but that the direction of travel usually varied (on the order
of 10 deg) during the interval of about 1/2 hr. Thomas (Ref. 12! sug-
gested that disturbances at latitudes near the zone of maximum auroral
and magnetic activity might have a higher velocity than those at lower
latitudes. Our results appear to support the belief that large-scale
TID's do change both speed and direction during the course of travel,

hecause:

I. we cannot locate physically possible routes for the disturbances by
assuming a constant speed and a constant direction, and

[C-3

most disturbances require much more time to travel between the two
southern paths than between the two northern paths.

It should be noted also that the accuracy of the time-of-crossing
measurement does not allow direction of travel to be determined within
an accuracy of 10 deg, even when the disturbances do travel with a con-
stant speed and a constant direction. However, it is certainly possible
to know that the general direction of travel is from north to south, and

that changes in velocity and/or direction do occur.

E. RELATIONSHIP BETWEEN LARGE-SCALE TID's AND SUDDEN COMMENCEMENTS OF
GEOMAGNETIC STORMS

Because out of nine traveling ionospheric disturbances detected by

this technique, three (Nos. 2, 4, and 8) were preceded by sudden

- 20 -



commencements of magnetic storms and one (No. 3) was preceded by a
Sudden impulse found in the Stanford magnetogram, an investigation was
made to see 1 f TI's generally follaw sudden commencements of magnetic
stomms. [uring the period from October 1950 to April 196), 22 sudden
commencements were reported (Ref. 22) by magnetie observatories in novth-
ern Mmerica. The [requency recordings of the four stable- frequency
Lransmission paths were carefully re-examined for a period of about 6 hr
after these sudden commencements. AL the time of anset of each sudden
conmencement, simultancous, abrupt fluctuations are always observed on
the frequency recordings of all available paths. During the relatively
calm period after the sudden commencements, and before the onset of the
comparatively strong geomagnetic activity Lhat usually appears several
hours after the sudden commencements, the frequency fluctuations of all
available paths are usually well correlated for a period of time varying
between 1/2 te 3 ar 4 hr  Then, on many occasions, the frequency flue-
tuations on all available paths began to differ in a way that suggests
the presence of TIl's. In many instances, specific disturbances can be
picked out  The results are tabulated iu Table 2, which con be sum-

marized as follows:

. Twenty-two sudden commencements {a to u) were reported during the
period from Octoher 1960 to April 1961

The frequency recordings on |l cases (d, f, g 1. m, n, o, q, r.

s. and u) provide no information, because either the equipment was
not functionioning properly, or, for a large number of cases, the
propagation conditions were poor as a result of low MUF or already
strong geomagnetic disturbance.

3. No TID is observed after three sudden commencements (¢, f. and k).
For c¢ and f, severe geomagnetic disunrbances set in abont 4 hr afver
the sudden commencements and no TI 1s observed during the 4-hr
period. For k, o TID is not observed for abont 6 hr after the
sndden commencement on two availahle paths only; the other two paths
were not operating.

4. TID's arec strongly suggested on frequency recordings after four
sndden commencements (a, b, h, and v). Multiple modes with the fre-
quency of the disturbed mode varying qnasi-sinusoidally are found
on the frequency recordings on more than ore of the available paths.

(2

5. TID's are positively recognized after fonr sndden commencements
(e, 1, p, and r). TID’s in 1, p, and r, of Table 2 are the same
as TID Nos. 2, 5, and 8 respectively reported in Table 1. The TID
observed in e of Table 2 15 not included in Table 1 because only
two paths were functioning properly at that time.

.91 -



In short, of the Il sudden commencoments baving useful frequency
recordings, TID's are not found after three sudden commencements, are

highly possible after fowr sudden commencements, and are definitely present
after the other four sudden commencements.
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IV, DISCUSSION

Munro (Refs. 2. 3] considered that traveling disturbances in the
ionosphere are associated with disturbances in the awmosphere in the form
of traveling pressure waves that cause a redistribution of ionization.
Vartyn (llef. 23) developed a theory of horizontally traveling cellular
atmospheric waves and later [lef. 24) suggested that perturbation of F-
region ionization might be the result of turbulence in lower regions.
Regardless of how a TID originates, we may assume that such a disturbance
is a traveling atmospheric wave of ellipsaidal shape in the F-region
which causes a redistribution of ionization as it travels along.

Figure 9(a) is a representation of a wypical ionespheric disturbance
traveling from north te south anil affecting the one-hop mode of a signal
Lraversing the WIV-20-10-SU path  Contours showing the heights of assumed
concentric elliptical troughs of a constant electron density which re-
flect the signal of interest are shown in Fig. 9(b). As the disturbed
region travels with velacity v, the signal is reflected along AN
The profile of ANV’ is plotted in Fig 9(c). If, for simplicity, only the
geometrical raypath is investigated, the doppler shifts as the signal 1s

reflected along AN’ are

20/1 = (2u/c) cos &,

¢ = angle of incidence in deg,
f = transmitted frequency in cps,
f = doppler sbifu an cps,

c = velocity of transmission in m/sec, and

j = downward vertical velocity in m/sec = -dh/dt
Since dx = v (¢,
Af/f = (2v/c) cos 6 (-dh/dx).

If v is assumed constant and 6 varies only slightly during the period
of interest, then &f varies as (-dh/dx), a quasi-sinusoidal curve as
shown in Fig 9(d), depending on the slope of the constant ion density of
the disturbance. [If the TID intercepts a transmission path differently,
so that the signal is reflected along BB’ or CC’' instead of along AA’,
then the amplitude and period of frequency fluctuations will be varied,
but the general quasi-sinusoidal form of the frequency fluctuations will
remain unchanged. If the one-hop and two-hop modes propagate at the same

time with approximately equal strength, and if the wavefrontof the TID

- 95 .



POINT-REFLECTOR MODEL OF A TRAVELING TONOSPHERIC DI STURBANCE,
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18 not wide enough to affect the two-hop made as illustrated in Fig. 9(a),
then the frequeney recordings will show multiple mades with the frequency
of one nade being constant and that of the ether being quasi- sinusoidal ly
disturbed.  If either the two-hop made 15 much weaker than the ane-hop
mode. or the wavefront of the traveling 1onespherie disturbance is wide
esough to affect all the nodes simultancously, then the recordings will
show predomivantly a single frequeacy that is quasi-sinusoidally disturbed.

Traveling 1onospheric disturbances Nos. 2. 3. 4, 5. 6, 8, and 9 in
Table | do exhibit the features described above, which are based on the
assunption of a traveling ellipsoidal trough of electron density. This
fact suggests that most of the TID's detectable by this technique are 1n
fact of the type shown in Fig. 9. I the TID 15 an the form of a tilted
step of constant electron-density [Rel 23] (i e.. the height of the re-
flection point 1ncreases monotonically during the peried of disturbance),
then V-shaped (requency [luctuations will be resulied, as noticed in dis-

turbances Nos | and 7

In the southern hemisphere during winter months, the direction of
travel is reported to be 30° E of N by Munro [Ref 4), from south to north
by Neisler [Rel. 8), and from 300° to 90° E of N by Price [Ref 35) In
the northern hemisphere during winter months the direction of uravel is
reported to be within 225 [rom geomagnetic north to south by Valverde
(Ref 13]. from north o south by Heister [Ref. 8), from cast to west by
Reynon [Hel. 7). toward the southecast by Toman (Ref. 6], and from 150° to
180° E of N by Thomas [Ref. 9]. It should be noticed. however, that
Heynon's resulis were based on only two points situated 1n the cast-west
direcuion, and the TID observed by Toman conld be due o irregularities
in the E-region  Therefore, most authors are in general agreement re-
garding the direction of travel for i1onospheric disturbances in the Fa
region during winter months  This direction 1s generally from geomagnetic
north to sonth in the northern hemisphere, and from geomagnetic south

to north in the southern hemisphere.

Of the nine traveling ionospheric disturbances reported here and found
by means of multiple-station stable-frequency transmissions, the periods
are from 30 to 90 min, the velocities are from 1450 to greater than 2400
km/hr, and the spatial lengths are from 1300 km to greater than 2400 km.
The wavefronts of disturbances cannot be determined accurately, but some

of them can be estimated to be greater than 2000 km in width



Except for Valverde [Nef. 17), all prelious researchers on this sul-
Ject obhserved TU's in the F region comparatively frequently. The average
velocities of the Jisturbances ranged from 350 to 600 km/hr, and the
spatial lengths were not greator than a few bundred km. The diflerence in
observed velocities may be due to the smaller size of these di sturbances,
and to the fact that these resulis refer to measurements at Ji flerent tLimes
of the day or scasons of Lhe year, at Jilferent geographical locations,
or at different heights in the F layer, since difflerent frequencies have
been used  Thomas [lef. 9) pointed out that the di fference in height was
probably the most significant factar in the discrepancy of velocities,
since he observed a height gradient of velocity (average about 3.6 km/hr
per ke increasing with height) in the F region. llowever, the average
velacity referred to at the faF2 level (as observed by Thamas) was about
650 km/hr, much smaller than the average velocity of the disturbances
reperted here.

Probably the reason that traveling ionospheric disturbances of speeds
greater than 1200 km/he in cthe F2 layer in non-auroral regions sere not
observed by all previous workers except Valverde and Tveten is hecause of
the time resolution in records obtained from closely spaced networks. On
the other hand, TI's of low speed are not observed in our experiment
hecause of wide separations of the transaission paths. A TID with a speed
of less than 1200 ke/hr will take more than | hr to travel from the northetn-
wost to the southernsost path. It probably will lose most of the recog-
nizahle characteristics on frequency recordings during the tise interval

reqoired for the passage.

Large-scale traveling disturbances of high speed appear o be much
rarer phenomenn than those of smaller size and lower speed. Only nine are
positively recognized here in a period of seven months, 15 (with speeds
of > 1200 km/hr) by Valverde [Ref 17) in o period of three months and
e1ght by Tveten (Ref. 18) in a period of one month. Valverde also re-
ported that on several occosions, when large-scale TIN's were observed on
backscatter records at 17.3 Mc, the transmissions of WWV 15 and 20 Mc from
Washington, D. C. to Stanford University were disrupted for periods of
the order of 15 min to several hours. Such signal failure would prevent

data from being taken by the technique of this report.

Beynon [Ref. 26), and Thomas [Ref. 9] found that the velocity of
disturbances is independent of the K index for K < 2.5, but increases with
the increase of magnetic activity for K > 2.5. Of the nine large-scale
disturbances reported here, the planetary Kp index ranges from 2.67 to

- 98 -



5. 33. with maximum eccurrence at RP 54 The limited number of detectable
large-scale TI s does not provide enough information to confirm or contra-
dict the correlation between the velocity and the magnetie activity. |If
the velocity of large scale traveling disturbances does correlate with
magaetic RP index, then KP 3 4 can be interpreted as the optimum condition
for detection of large-scale traveling disturbances by means of simultaneous
frequency recordings on geograpbically separated multiple paths. This
condition occurs becanse this experimental setup is 1nsensitive Lo low-
speed disturbances, correlated with lower Kp index, while the rapid fre-
quency fluctuations due to high magnetic activity, corrclated with high

“P index, may be so intense and confusing that the effect of individual
traveling diswurbances on the [requency recordings eannot be recognized
The sudden changes of the carth's magnetic Meld tkat preceded TH's Nos
2.4, 5 and 8 are very interesting.  Althaugh the study sumparized 1n
Table 2 cannot provide conclusive confirmation. the results seem Lo sug-
gest strongly that sudden commencements of geomagnetic storms and large-
scale TID's are related I they are truly related, the obvious questions
are how they are related and why some of the TID's reported 1n Table | are
not preceded by sudden commencements of geomagnetic storms. It is also
intchsting to nate that Thomas [Bel. 12] reported that in some cases quite
small perturbations 1n the magnetogram traces corncided with enhanced

velocities of traveling disturbances.

Future rescarch on this subject should be conducted with the aid of
onc or morc magnclomelers sensitive to small and sndden changes of the
carth’s sagnetic field Various characteristics of TIN's should he com-
parcd not only to how much the carth’s magnetic field bas changed but,
probably more important, to how rapidly the earth’'s magnetic field has
changed. The fact that sudden commencements of geomagnetic storms precede
some TID's suggests that, if they are truly correlated, the traveling
tonospheric disturhances may be caused by the same mechanism that canses
the magnetic variations. A detailed study along this tine will probably

lead to the understanding of cnergy sources of traveling ionospheric waves



V. CONCLUSIONS

Traveling 10mospheric disturbances have been detected by means of
their effect on the simultaneons (requency recordings of four stable-
(requeney transmissions. llecanse of the wide separation of the long-
distance transmission paths, the experiment is sensitive only to large-
scale, high-speed TI's  These disturbances would probably not be detect-
ed on recordings made with the comparatively close-spaced networks used
by many researchers in the past. From 1600 bours of data (vsvally from
1600 to 0200 UT) betwesn October 1960 and April 1961, nine TID's have been
pesitively recognized. With the assumption that 1onospheric disturbances
travel with constant speed in a great-circle path, it is possible to es-
tmate speeds and spatial lepgths in six instances. Velocities range [rom
1450 to approximately 2700 km/hr, and spatial lengths frem 1300 to greater
than 2000 km. The direction of travel cannot ke determined accurately,
but, i1n ecach case, the general direction is frem north te south. The re-
sults also suggest that some of the TIN's change their velocity and/or
direction of travel during the passage through the four stable- frequency
paths. In four cases. sudden [requency changes--three correlated with
sudden commencements of geomagnetic storms and one correlated with a
sudden impulse found in a magnetogram taken at Stanford--preceded the
occurrence of large-scale TID's. During the same period from October 1960
to April 1961, of the 1l sudden commencements when the frequency recordings
are usefnl for investigation, traveling ionospheric disturbances are found
to be absent after three sudden coemencements, highly possihle afrer four
sudden commencements, and definitely present after four sudden commence-
ments.  Althongh the information so far obtained is inconclusive, it is
suggested that these large-scale TIR's might have heen launched by the same

event giving rise to the sudden change of carth’s magnetic field.
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